Evaluation of Apricot, Bilberry, and Elderberry Pomace Constituents and Their Potential To Enhance the Endothelial Nitric Oxide Synthase (eNOS) Activity

Pomace, the press residue from different fruits accumulating as waste product in food industry, contains high amounts of secondary metabolites that could be utilized for health-related applications. This study aims at evaluating the potential of pomaces of apricot, bilberry, and elderberry to serve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2018-09, Vol.3 (9), p.10545-10553
Hauptverfasser: Waldbauer, Katharina, Seiringer, Günter, Sykora, Christina, Dirsch, Verena M, Zehl, Martin, Kopp, Brigitte
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pomace, the press residue from different fruits accumulating as waste product in food industry, contains high amounts of secondary metabolites that could be utilized for health-related applications. This study aims at evaluating the potential of pomaces of apricot, bilberry, and elderberry to serve as a source for endothelial nitric oxide synthase (eNOS)-activating compounds. Five extracts obtained from the lyophilized pomace of apricot and elderberry with solvents of different polarity were found to enhance A23187-stimulated eNOS activity when tested at 50 μg/mL in an [14C]-l-arginine to [14C]-l-citrulline conversion assay in the human endothelium-derived cell line EA.hy926 (p < 0.05). The bioassay-guided fractionation of the extracts obtained with methanol/water (70:30) led to several active fractions from apricot pomace (p < 0.05) and elderberry pomace (p < 0.01). Liquid chromatography–mass spectrometry-based chemical analysis of the extracts and active fractions pointed mainly to triterpenoic acids as active compounds. One particular dihydroxytriterpenoic acid, characteristic for elderberry, was enriched as the main compound in the two most active fractions and might serve as a promising lead structure for further studies.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.8b00638