Enhanced Mechanical Properties of Surface Treated AZ31 Reinforced Polymer Composites

To enhance the potential application of naturally biodegradable polylactic acid (PLA)-based composites reinforced with magnesium alloy, anodized coatings between Mg and PLA were fabricated on AZ31 magnesium alloy rods. After anodizing (AO) at four different treatment times, the surface demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2020-05, Vol.10 (5), p.381
Hauptverfasser: Butt, Muhammad Shoaib, Maqbool, Adnan, Umer, Malik Adeel, Saleem, Mohsin, Malik, Rizwan Ahmed, Alarifi, Ibrahim M., Alrobei, Hussein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enhance the potential application of naturally biodegradable polylactic acid (PLA)-based composites reinforced with magnesium alloy, anodized coatings between Mg and PLA were fabricated on AZ31 magnesium alloy rods. After anodizing (AO) at four different treatment times, the surface demonstrated a typical porous MgO ceramics morphology, which greatly improved the mechanical properties of composite rods compared to untreated pure Mg. This was attributed to the micro-anchoring effect, which increases interfacial binding forces significantly between the Mg rod and PLA. Additionally, the AO layer can also substantially improve the degradability of composite rods in Hank’s solution, due to good corrosion resistance and stronger bonding between PLA and Mg. With a prolonged immersion time of up to 30 days, the porous MgO coating was eventually found to be degraded, evolving to a comparatively smooth surface resulting in a decline in mechanical properties due to a decrease in interfacial bonding strength. According to the current findings, the PLA-clad surface treated Mg composite rod may hold promise for use as a bioresorbable implant material for orthopedic inner fixation.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst10050381