Multi-breed genomic prediction using Bayes R with sequence data and dropping variants with a small effect
The increasing availability of whole-genome sequence data is expected to increase the accuracy of genomic prediction. However, results from simulation studies and analysis of real data do not always show an increase in accuracy from sequence data compared to high-density (HD) single nucleotide polym...
Gespeichert in:
Veröffentlicht in: | Genetics selection evolution (Paris) 2017-09, Vol.49 (1), p.70-70, Article 70 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The increasing availability of whole-genome sequence data is expected to increase the accuracy of genomic prediction. However, results from simulation studies and analysis of real data do not always show an increase in accuracy from sequence data compared to high-density (HD) single nucleotide polymorphism (SNP) chip genotypes. In addition, the sheer number of variants makes analysis of all variants and accurate estimation of all effects computationally challenging. Our objective was to find a strategy to approximate the analysis of whole-sequence data with a Bayesian variable selection model. Using a simulated dataset, we applied a Bayes R hybrid model to analyse whole-sequence data, test the effect of dropping a proportion of variants during the analysis, and test how the analysis can be split into separate analyses per chromosome to reduce the elapsed computing time. We also investigated the effect of imputation errors on prediction accuracy. Subsequently, we applied the approach to a dataset that contained imputed sequences and records for production and fertility traits for 38,492 Holstein, Jersey, Australian Red and crossbred bulls and cows.
With the simulated dataset, we found that prediction accuracy was highly increased for a breed that was not represented in the training population for sequence data compared to HD SNP data. Either dropping part of the variants during the analysis or splitting the analysis into separate analyses per chromosome decreased accuracy compared to analysing whole-sequence data. First, dropping variants from each chromosome and reanalysing the retained variants together resulted in an accuracy similar to that obtained when analysing whole-sequence data. Adding imputation errors decreased prediction accuracy, especially for errors in the validation population. With real data, using sequence variants resulted in accuracies that were similar to those obtained with the HD SNPs.
We present an efficient approach to approximate analysis of whole-sequence data with a Bayesian variable selection model. The lack of increase in prediction accuracy when applied to real data could be due to imputation errors, which demonstrates the importance of developing more accurate methods of imputation or directly genotyping sequence variants that have a major effect in the prediction equation. |
---|---|
ISSN: | 1297-9686 0999-193X 1297-9686 |
DOI: | 10.1186/s12711-017-0347-9 |