Mutant kri1l causes abnormal retinal development via cell cycle arrest and apoptosis induction
Damage to the ribosome or an imbalance in protein biosynthesis can lead to some human diseases, such as diabetic retinopathy (DR) and other eye diseases. Here, we reported that the kri1l gene was responsible for retinal development. The kri1l gene encodes an essential component of the rRNA small sub...
Gespeichert in:
Veröffentlicht in: | Cell death discovery 2024-05, Vol.10 (1), p.251-251, Article 251 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Damage to the ribosome or an imbalance in protein biosynthesis can lead to some human diseases, such as diabetic retinopathy (DR) and other eye diseases. Here, we reported that the
kri1l
gene was responsible for retinal development. The
kri1l
gene encodes an essential component of the rRNA small subunit processome. The retinal structure was disrupted in
kri1l
mutants, which resulted in small eyes. The boundaries of each layer of cells in the retina were blurred, and each layer of cells was narrowed and decreased. The photoreceptor cells and Müller glia cells almost disappeared in
kri1l
mutants. The lack of photoreceptor cells caused a fear of light response. The development of the retina started without abnormalities, and the abnormalities began two days after fertilization. In the
kri1l
mutant, retinal cell differentiation was defective, resulting in the disappearance of cone cells and Müller cells. The proliferation of retinal cells was increased, while apoptosis was also enhanced in
kri1l
mutants. γ-H2AX upregulation indicated the accumulation of DNA damage, which resulted in cell cycle arrest and apoptosis. The
kri1l
mutation reduced the expression of some opsin genes and key retinal genes, which are also essential for retinal development. |
---|---|
ISSN: | 2058-7716 2058-7716 |
DOI: | 10.1038/s41420-024-02022-2 |