Astrocytic atrophy as a pathological feature of Parkinson’s disease with LRRK2 mutation

The principal hallmark of Parkinson’s disease (PD) is the selective neurodegeneration of dopaminergic neurones. Mounting evidence suggests that astrocytes may contribute to dopaminergic neurodegeneration through decreased homoeostatic support and deficient neuroprotection. In this study, we generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ Parkinson's Disease 2021-03, Vol.7 (1), p.31-31, Article 31
Hauptverfasser: Ramos-Gonzalez, Paula, Mato, Susana, Chara, Juan Carlos, Verkhratsky, Alexei, Matute, Carlos, Cavaliere, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The principal hallmark of Parkinson’s disease (PD) is the selective neurodegeneration of dopaminergic neurones. Mounting evidence suggests that astrocytes may contribute to dopaminergic neurodegeneration through decreased homoeostatic support and deficient neuroprotection. In this study, we generated induced pluripotent stem cells (iPSC)-derived astrocytes from PD patients with LRRK2 (G2019S) mutation and healthy donors of the similar age. In cell lines derived from PD patients, astrocytes were characterised by a significant decrease in S100B and GFAP-positive astrocytic profiles associated with marked decrease in astrocyte complexity. In addition, PD-derived astrocytes demonstrated aberrant mitochondrial morphology, decreased mitochondrial activity and ATP production along with an increase of glycolysis and increased production of reactive oxygen species. Taken together, our data indicate that astrocytic asthenia observed in patient-derived cultures with LRRK2 (G2019S) mutation may contribute to neuronal death through decreased homoeostatic support, elevated oxidative stress and failed neuroprotection.
ISSN:2373-8057
2373-8057
DOI:10.1038/s41531-021-00175-w