Inverting polar domains via electrical pulsing in metallic germanium telluride

Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-04, Vol.8 (1), p.15033-15033, Article 15033
Hauptverfasser: Nukala, Pavan, Ren, Mingliang, Agarwal, Rahul, Berger, Jacob, Liu, Gerui, Johnson, A. T. Charlie, Agarwal, Ritesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71 o domain boundaries into 109 o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage. Polar metals such as GeTe could store information using electric domains but the high conductivity screens electric fields, preventing the use of usual domain control techniques. Here, the authors demonstrate that polar domains in GeTe can be manipulated using electrically generated heat shocks.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms15033