Microwave Spin Control of a Tin-Vacancy Qubit in Diamond

The negatively charged tin-vacancy (SnV–) center in diamond is a promising solid-state qubit for applications in quantum networking due to its high quantum efficiency, strong zero phonon emission, and reduced sensitivity to electrical noise. The SnV– has a large spin-orbit coupling, which allows for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2023-08, Vol.13 (3), p.031022, Article 031022
Hauptverfasser: Rosenthal, Eric I., Anderson, Christopher P., Kleidermacher, Hannah C., Stein, Abigail J., Lee, Hope, Grzesik, Jakob, Scuri, Giovanni, Rugar, Alison E., Riedel, Daniel, Aghaeimeibodi, Shahriar, Ahn, Geun Ho, Van Gasse, Kasper, Vučković, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The negatively charged tin-vacancy (SnV–) center in diamond is a promising solid-state qubit for applications in quantum networking due to its high quantum efficiency, strong zero phonon emission, and reduced sensitivity to electrical noise. The SnV– has a large spin-orbit coupling, which allows for long spin lifetimes at elevated temperatures, but unfortunately suppresses the magnetic dipole transitions desired for quantum control. Here, by use of a naturally strained center, we overcome this limitation and achieve high-fidelity microwave spin control. We demonstrate a π-pulse fidelity of up to 99.51 ± 0.03 % and a Hahn-echo coherence time of $T$$^{echo}_{2}$ = 170.0 ± 2.8 μs, both the highest yet reported for SnV– platform. This performance comes without compromise to optical stability, and is demonstrated at 1.7 K where ample cooling power is available to mitigate drive-induced heating. These results pave the way for SnV– spins to be used as a building block for future quantum technologies.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.13.031022