SCALINGS AND LIMITS OF LANDAU-DE GENNES MODELS FOR LIQUID CRYSTALS: A COMMENT ON SOME RECENT ANALYTICAL PAPERS

Some recent analytical papers have explored limiting behaviors of Landaude Gennes models for liquid crystals in certain extreme ranges of the model parameters: limits of “vanishing elasticity” (in the language of some of these papers) and “low-temperature limits.” We use simple scaling analysis to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis 2018-06, Vol.23 (3), p.414-432
1. Verfasser: Gartland Jr, Eugene C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some recent analytical papers have explored limiting behaviors of Landaude Gennes models for liquid crystals in certain extreme ranges of the model parameters: limits of “vanishing elasticity” (in the language of some of these papers) and “low-temperature limits.” We use simple scaling analysis to show that these limits are properly interpreted as limits in which geometric length scales (such as the size of the domain containing the liquid crystal material) become large compared to intrinsic length scales (such as correlation lengths or coherence lengths, which determine defect core sizes). This represents the natural passage from a mesoscopic model to a macroscopic model and is analogous to a “London limit” in the Ginzburg-Landau theory of superconductivity or a “large-body limit” in the Landau-Lifshitz theory of ferromagnetism. Known relevant length scales in these parameter regimes (nematic correlation length, biaxial coherence length) can be seen to emerge via balances in equilibrium Euler-Lagrange equations associated with well-scaled Landau-de Gennes free-energy functionals.
ISSN:1392-6292
1648-3510
DOI:10.3846/mma.2018.025