Canalization and developmental stability of the yellow-necked mouse (Apodemus flavicollis) mandible and cranium related to age and nematode parasitism

Mammalian mandible and cranium are well-established model systems for studying canalization and developmental stability (DS) as two elements of developmental homeostasis. Nematode infections are usually acquired in early life and increase in intensity with age, while canalization and DS of rodent sk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in zoology 2021-10, Vol.18 (1), p.1-55, Article 55
Hauptverfasser: JojiÄ, Vida, Äabrilo, Borislav, BjeliÄ-Äabrilo, Olivera, JovanoviÄ, Vladimir M, Budinski, Ivana, VujoÅ¡eviÄ, Mladen, BlagojeviÄ, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mammalian mandible and cranium are well-established model systems for studying canalization and developmental stability (DS) as two elements of developmental homeostasis. Nematode infections are usually acquired in early life and increase in intensity with age, while canalization and DS of rodent skulls could vary through late postnatal ontogeny. We aimed to estimate magnitudes and describe patterns of mandibular and cranial canalization and DS related to age and parasite intensity (diversity) in adult yellow-necked mice (Apodemus flavicollis). We found the absence of age-related changes in the levels of canalization for mandibular and cranial size and DS for mandibular size. However, individual measures of mandibular and cranial shape variance increased, while individual measures of mandibular shape fluctuating asymmetry (FA) decreased with age. We detected mandibular and cranial shape changes during postnatal ontogeny, but revealed no age-related dynamics of their covariance structure among and within individuals. Categories regarding parasitism differed in the level of canalization for cranial size and the level of DS for cranial shape. We observed differences in age-related dynamics of the level of canalization between non-parasitized and parasitized animals, as well as between yellow-necked mice parasitized by different number of nematode species. Likewise, individual measures of mandibular and cranial shape FA decreased with age for the mandible in the less parasitized category and increased for the cranium in the most parasitized category. Our age-related results partly agree with previous findings. However, no rodent study so far has explored age-related changes in the magnitude of FA for mandibular size or mandibular and cranial FA covariance structure. This is the first study dealing with the nematode parasitism-related canalization and DS in rodents. We showed that nematode parasitism does not affect mandibular and cranial shape variation and covariance structure among and within individuals. However, parasite intensity (diversity) is related to ontogenetic dynamics of the levels of canalization and DS. Overall, additional studies on animals from natural populations are required before drawing some general conclusions.
ISSN:1742-9994
1742-9994
DOI:10.1186/s12983-021-00439-4