The Effect of Degree of Saturation of Sand on Detonation Phenomena Associated with Shallow‐Buried and Ground‐Laid Mines

A new materials model for sand has been developed in order to include the effects of the degree of saturation and the deformation rate on the constitutive response of this material. The model is an extension of the original compaction materials model for sand in which these effects were neglected. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock and vibration 2006-01, Vol.13 (1), p.41-61
Hauptverfasser: Grujicic, M., Pandurangan, B., Cheeseman, B.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new materials model for sand has been developed in order to include the effects of the degree of saturation and the deformation rate on the constitutive response of this material. The model is an extension of the original compaction materials model for sand in which these effects were neglected. The new materials model for sand is next used, within a non‐linear‐dynamics transient computational analysis, to study various phenomena associated with the explosion of shallow‐buried and ground‐laid mines. The computational results are compared with the corresponding experimental results obtained through the use of an instrumented horizontal mine‐impulse pendulum, pressure transducers buried in sand and a post‐detonation metrological study of the sand craters. The results obtained suggest that the modified compaction model for sand captures the essential features of the dynamic behavior of sand and accounts reasonably well for a variety of the experimental findings related to the detonation of shallow‐buried or ground‐laid mines.
ISSN:1070-9622
1875-9203
DOI:10.1155/2006/652405