Rate-Based Modeling and Assessment of an Amine-Based Acid Gas Removal Process through a Comprehensive Solvent Selection Procedure

In this study, an industrial acid gas removal (AGR) process which uses amine-based solvents was designed and simulated. The selection of suitable absorbents is crucial for an effective AGR process. Therefore, various single and blended amine-based solvents for capturing acid gases were evaluated thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-09, Vol.15 (18), p.6817
Hauptverfasser: Agarwal, Neha, Cao Nhien, Le, Lee, Moonyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, an industrial acid gas removal (AGR) process which uses amine-based solvents was designed and simulated. The selection of suitable absorbents is crucial for an effective AGR process. Therefore, various single and blended amine-based solvents for capturing acid gases were evaluated through a comprehensive procedure, including solvent screening and process design steps. First, various solvents were screened for their CO2 and H2S absorption efficiencies. Promising solvents were then selected for the process design step, in which all process alternatives were simulated and rigorously designed using Aspen Plus. The non-equilibrium rate-based method with an electrolyte non-random two-liquid thermodynamic model was employed for modeling the absorption column. All processes were evaluated in terms of energy requirements, costs, and carbon emissions. The results show that a blend of methyldiethanolamine and piperazine solutions are the most promising solvents for the AGR process, as they can save up to 29.1% and 30.3% of the total annual costs and carbon emissions, respectively, compared to the methyldiethanolamine + diethanolamine solvent process.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15186817