Nonlinear Periodic Oscillation of a Cylindrical Microvoid Centered at an Isotropic Incompressible Ogden Cylinder
We study the dynamic mathematical model for an infinitely long cylinder composed of an isotropic incompressible Ogden material with a microvoid at its center, where the outer surface of the cylinder is subjected to a uniform radial tensile load. Using the incompressibility condition and the boundary...
Gespeichert in:
Veröffentlicht in: | Journal of applied mathematics 2012-01, Vol.2012 (2012), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the dynamic mathematical model for an infinitely long cylinder composed of an isotropic incompressible Ogden material with a microvoid at its center, where the outer surface of the cylinder is subjected to a uniform radial tensile load. Using the incompressibility condition and the boundary conditions, we obtain a second-order nonlinear ordinary differential equation that describes the motion of the microvoid with time. Qualitatively, we find that this equation has two types of solutions. One is a classical nonlinear periodic solution which describes that the motion of the microvoid is a nonlinear periodic oscillation; the other is a blow-up solution. Significantly, for the isotropic incompressible Ogden material, there exist some special values of material parameters, the phase diagrams of the motion equation have homoclinic orbits, which means that the amplitude of a nonlinear periodic oscillation increases discontinuously with the increasing load. |
---|---|
ISSN: | 1110-757X 1687-0042 |
DOI: | 10.1155/2012/872161 |