3-(((1 S ,3 S )-3-(( R )-Hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione: Design and Synthesis of New Stereopure Multi-Target Antidiabetic Agent

The chiral drug candidates have more effective binding affinities for their specific protein or receptor site for the onset of pharmacological action. Achieving all carbon stereopure compounds is not trivial in chemical synthesis. However, with the development of asymmetric organocatalysis, the synt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2022-05, Vol.27 (10), p.3265
Hauptverfasser: Sadiq, Abdul, Mahnashi, Mater H, Rashid, Umer, Jan, Muhammad Saeed, Alshahrani, Mohammed Abdulrahman, Huneif, Mohammed A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chiral drug candidates have more effective binding affinities for their specific protein or receptor site for the onset of pharmacological action. Achieving all carbon stereopure compounds is not trivial in chemical synthesis. However, with the development of asymmetric organocatalysis, the synthesis of certain vital chiral drug candidates is now possible. In this research, we have synthesized 3-(((1 ,3 )-3-(( )-hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione ( , , - ) and have evaluated it potential as multi-target antidiabetic agent. The stereopure compound , , - was synthesized with a 99:1 enantiomeric ratio. The synthesized compound gave encouraging results against all in vitro antidiabetic targets, exhibiting IC values of 6.28, 4.58, 0.91, and 2.36 in α-glucosidase, α-amylase, PTP1B, and DPPH targets, respectively. The molecular docking shows the binding of the compound in homology models of the respective enzymes. In conclusion, we have synthesized a new chiral molecule ( , , - ). The compound proved to be a potential inhibitor of the tested antidiabetic targets. With the observed results and molecular docking, it is evident that , , - is a potential multitarget antidiabetic agent. Our study laid the baseline for the animal-based studies of this compound in antidiabetic confirmation.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27103265