Research on performance optimization and mechanism of electrochemical water softening applied by pulse power supply
In order to promote the application of electrochemical water softening technology in industrial circulating cooling water systems, electric field type, cathode structure and solution residence time are selected for optimization analysis of an electrochemical water softening device. The experimental...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2021-11, Vol.84 (9), p.2432-2445 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to promote the application of electrochemical water softening technology in industrial circulating cooling water systems, electric field type, cathode structure and solution residence time are selected for optimization analysis of an electrochemical water softening device. The experimental results show that the water softening performance per unit area of mesh cathode is better than that of a plate cathode. In addition, the softening amount per unit area of the mesh cathode can be further increased when the high-frequency (HF) power supply is applied. When the HF power supply is applied, the softening amount per unit area is 158.58 g/m2·h−1 more than when the direct current power supply is applied. In order to explore the growth mechanism of calcium carbonate, micro-analysis technology and high-speed bubble photography technology are used. The results show that the bubbles escape along the longitudinal direction of the electrode plate, and the main growth direction of calcium carbonate growth is consistent with the escape direction of the bubble; that is, the bubbles grow along the longitudinal direction of the electrode plate. The special structure of the diamond-shaped mesh cathode facilitates the growth of calcium carbonate crystals. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.2166/wst.2021.436 |