A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators

Given a bounded open set $ \Omega\subseteq{\mathbb{R}}^n $, we consider the eigenvalue problem for a nonlinear mixed local/nonlocal operator with vanishing conditions in the complement of $ \Omega $. We prove that the second eigenvalue $ \lambda_2(\Omega) $ is always strictly larger than the first e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in engineering 2023-02, Vol.5 (1), p.1-25
Hauptverfasser: Biagi, Stefano, Dipierro, Serena, Valdinoci, Enrico, Vecchi, Eugenio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a bounded open set $ \Omega\subseteq{\mathbb{R}}^n $, we consider the eigenvalue problem for a nonlinear mixed local/nonlocal operator with vanishing conditions in the complement of $ \Omega $. We prove that the second eigenvalue $ \lambda_2(\Omega) $ is always strictly larger than the first eigenvalue $ \lambda_1(B) $ of a ball $ B $ with volume half of that of $ \Omega $. This bound is proven to be sharp, by comparing to the limit case in which $ \Omega $ consists of two equal balls far from each other. More precisely, differently from the local case, an optimal shape for the second eigenvalue problem does not exist, but a minimizing sequence is given by the union of two disjoint balls of half volume whose mutual distance tends to infinity.
ISSN:2640-3501
2640-3501
DOI:10.3934/mine.2023014