Long-Term High-Fat High-Fructose Diet Induces Type 2 Diabetes in Rats through Oxidative Stress

Long-term consumption of a Western diet is a major cause of type 2 diabetes mellitus (T2DM). However, the effects of diet on pancreatic structure and function remain unclear. Rats fed a high-fat, high-fructose (HFHF) diet were compared with rats fed a normal diet for 3 and 18 months. Plasma biochemi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2022-05, Vol.14 (11), p.2181
Hauptverfasser: Zhao, Yue, Wang, Qing-Yu, Zeng, Lv-Tao, Wang, Jing-Jing, Liu, Zhen, Fan, Guo-Qing, Li, Jin, Cai, Jian-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-term consumption of a Western diet is a major cause of type 2 diabetes mellitus (T2DM). However, the effects of diet on pancreatic structure and function remain unclear. Rats fed a high-fat, high-fructose (HFHF) diet were compared with rats fed a normal diet for 3 and 18 months. Plasma biochemical parameters and inflammatory factors were used to reflect metabolic profile and inflammatory status. The rats developed metabolic disorders, and the size of the islets in the pancreas increased after 3 months of HFHF treatment but decreased and became irregular after 18 months. Fasting insulin, C-peptide, proinsulin, and intact proinsulin levels were significantly higher in the HFHF group than those in the age-matched controls. Plasmatic oxidative parameters and nucleic acid oxidation markers (8-oxo-Gsn and 8-oxo-dGsn) became elevated before inflammatory factors, suggesting that the HFHF diet increased the degree of oxidative stress before affecting inflammation. Single-cell RNA sequencing also verified that the transcriptional level of oxidoreductase changed differently in islet subpopulations with aging and long-term HFHF diet. We demonstrated that long-term HFHF diet and aging-associated structural and transcriptomic changes that underlie pancreatic islet functional decay is a possible underlying mechanism of T2DM, and our study could provide new insights to prevent the development of diet-induced T2DM.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu14112181