Phloretin-nanospanlastics for targeting the Akt/PI3K signaling pathways in dimethylhydrazine-induced colon cancer in mice

Colorectal cancer is the third most common cancer worldwide, accounting for approximately 10 % of all cancer cases. It is also the second leading cause of cancer-related deaths globally. Phloretin is a natural compound found in apples and other fruits. It has been studied for its potential health be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics: X 2025-06, Vol.9, p.100311, Article 100311
Hauptverfasser: Abdel-Wahab, Ebtsam A., Al-Qaim, Zahraa Haleem, Faris Al-Karkhi, Ahmed T.H., Fayed, Aysam M., Eldmrdash, Ahmed M., Hussein, Mohammed Abdalla, Abdel-Aziz, Amal, Metwaly, Azza M., Abdelzaher, Heba.G., Abdelzaher, M.A., ALsherif, Diana A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colorectal cancer is the third most common cancer worldwide, accounting for approximately 10 % of all cancer cases. It is also the second leading cause of cancer-related deaths globally. Phloretin is a natural compound found in apples and other fruits. It has been studied for its potential health benefits, including antioxidant and anti-inflammatory properties. However, more research is needed to fully understand its impact on cancer prevention or treatment. This article aimed to prepare phloretin-nanospanlastics (Ph-NSLs) to evaluate their effects on dimethylhydrazine (DMH)-induced colon cancer in mice. Morphology, Particle size, zeta potential, UV–vis, entrapment efficiency, polydispersity index, FT-IR spectra, and drug release of phloretin and Ph-NSLs at pH 6.8.were described. Ph-NSLs were also tested for their anti-cancer properties in DMH-induced colon cancer in mice. A 36 mice were divided into 6 groups; Normal control, DMH (20 mg/k.g.b.w.), DMH + Ph-NSLs (25 mg/k.g.b.w.), DMH + Ph-NSLs (50 mg/k.g.b.w.), DMH + 5-FU(20 mg/k.g.b.w.), DMH + Ph-NSLs (50 mg), 5-FU (20 mg). Ph-NSLs were tested for their anticancer properties in DMH-treated mice by evaluating the IC50, viability and inhibitory values of Ph-NSLs against Caco-2. Also, the effect of Ph-NSLs administration on number of surviving mice, number of tumors/mice, average of tumor size, Hb, RBCs, WBCs, C19–9, MDA, GSH, SOD, IL-2, TNF-α, TGF-β1, CEA, and P53 levels in mice treated DMH were estimated. The synthesized Ph-NSLs were uniform, spherically shaped, and well dispersed, with a size, entrapment efficiency, and polydispersity index of approximately 114.06 ± 8.35 nm, 78.60 %, and 0.05, respectively. The zeta potential value of Ph-NSLs was measured at −21.5 ± 1.47 mV. Zeta potential reflects the surface charge of nanoparticles and affects their stability and interactions. UV spectra of phloretin and Ph-NSLs showed strong absorption peaks at 225 and 285 nm. These peaks correspond to specific wavelengths where the compound absorbs light. The percentage of Ph- NSLs release was found to be 56.87 ± 2.45 %. IC50 of Ph-NSLs was recorded 15.76 ± 0.42 μg/ml and the viability and inhibitory values of Ph-NSLs against Caco-2 cell lines was resorded 2.39, and 97.61 %, respectively at 100 μg/ml as well as 10.3, and 89.7 %, respectively at 50 μg/ml. Moreover, The combination of 5-FU and Ph-NSLs resulted in a moderate increase in survival and significantly reduces tumor size and number, showing enhanced anticancer
ISSN:2590-1567
2590-1567
DOI:10.1016/j.ijpx.2024.100311