Visión artificial en reconocimiento de patrones para clasificación de frutas en agronegocios
La presente tuvo como objetivo determinar la efectividad de aplicar visión artificial en reconocimiento de patrones para la clasificación de frutas en los agronegocios, para ello se ha empleado una base de datos con 50 registros de 6 variedades de frutas donde se consideró 4 características para cad...
Gespeichert in:
Veröffentlicht in: | PURIQ 2020-04, Vol.2 (2), p.109-118 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; spa |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | La presente tuvo como objetivo determinar la efectividad de aplicar visión artificial en reconocimiento de patrones para la clasificación de frutas en los agronegocios, para ello se ha empleado una base de datos con 50 registros de 6 variedades de frutas donde se consideró 4 características para cada fruta y una muestra de 20 frutas, así mismo se ha empleado la técnica reconocimiento automático de patrones por medio del clasificador bayesiano implementado en Octave, en el experimento se logró reconocer las frutas hasta en un 93.33% y errando en 6.67%. Concluyendo que si es efectivo aplicar la visión artificial en el reconocimiento de patrones para clasificar frutas. |
---|---|
ISSN: | 2664-4029 2707-3602 |
DOI: | 10.37073/puriq.2.2.76 |