Well-posed results for nonlocal biparabolic equation with linear and nonlinear source terms

In this paper, we consider the biparabolic problem under nonlocal conditions with both linear and nonlinear source terms. We derive the regularity property of the mild solution for the linear source term while we apply the Banach fixed-point theorem to study the existence and uniqueness of the mild...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2021-10, Vol.2021 (1), p.1-16, Article 434
Hauptverfasser: Long, Le Dinh, Binh, Ho Duy, Thi, Kim Van Ho, Nguyen, Van Thinh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the biparabolic problem under nonlocal conditions with both linear and nonlinear source terms. We derive the regularity property of the mild solution for the linear source term while we apply the Banach fixed-point theorem to study the existence and uniqueness of the mild solution for the nonlinear source term. In both cases, we show that the mild solution of our problem converges to the solution of an initial value problem as the parameter epsilon tends to zero. The novelty in our study can be considered as one of the first results on biparabolic equations with nonlocal conditions.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-021-03602-7