Application of Experimental Measurements in a Wind Tunnel to the Development of a Model for Aerodynamic Drag on Elite Slalom and Giant Slalom Alpine Skiers
Aerodynamic drag is a major cause of energy losses during alpine ski racing. Here we developed two models for monitoring the aerodynamic drag on elite alpine skiers in the technical disciplines. While 10 skiers assumed standard positions (high, middle, tuck) with exposure to different wind speeds (4...
Gespeichert in:
Veröffentlicht in: | APPLIED SCIENCES-BASEL 2022-01, Vol.12 (2), p.902 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aerodynamic drag is a major cause of energy losses during alpine ski racing. Here we developed two models for monitoring the aerodynamic drag on elite alpine skiers in the technical disciplines. While 10 skiers assumed standard positions (high, middle, tuck) with exposure to different wind speeds (40, 60, and 80 km/h) in a wind tunnel, aerodynamic drag was assessed with a force plate, shoulder height with video-based kinematics, and cross-sectional area with interactive image segmentation. The two regression models developed had 3.9–7.7% coefficients of variation and 4.5–16.5% relative limits of agreement. The first was based on the product of the coefficient of aerodynamic drag and cross-sectional area (Cd∙S) and the second on the coefficient of aerodynamic drag Cd and normalized cross-sectional area of the skier Sn, both expressed as a function of normalized shoulder height (hn). In addition, normative values for Cd (0.75 ± 0.09–1.17 ± 0.09), Sn (0.51 ± 0.03–0.99 ± 0.05), hn (0.48 ± 0.03–0.79 ± 0.02), and Cd∙S (0.23 ± 0.03–0.66 ± 0.09 m2) were determined for the three different positions and wind speeds. Since the uncertainty in the determination of energy losses due to aerodynamic drag relative to total energy loss with these models is expected to be |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12020902 |