Visualization Experimental Investigation on Flow Regulation and Oil Displacement Characteristics of Gel Foam in Fractured-Vuggy Carbonate Reservoirs

Fractured-vuggy reservoirs experience severe channeling during water and gas injection operations, and conventional foam shows weak regeneration capabilities in large-scale fracture spaces, thus failing to effectively seal them. Gel foam combines the advantages of both foam and gel, significantly en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-10, Vol.9 (39), p.40810-40820
Hauptverfasser: Yang, Yingda, Rong, Gen, Xin, Yan, Song, Yongjin, Li, Binfei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fractured-vuggy reservoirs experience severe channeling during water and gas injection operations, and conventional foam shows weak regeneration capabilities in large-scale fracture spaces, thus failing to effectively seal them. Gel foam combines the advantages of both foam and gel, significantly enhancing the foam’s stability and showing good suitability in fractured-vuggy reservoirs. In this article, the plugging and flow regulation properties of gel foam in fractures were studied through fracture displacement experiments. The dynamic plugging capability of gel foam was superior to that of ordinary foam, and its plugging effect was significantly influenced by the fracture opening. Gel foam had strong retention capacity in fractures, and after plugging large-opening fractures, the diversion rate of small-opening fractures was increased by at least 83.3 times during subsequent parallel water flooding, making the flow regulation effect remarkable. Through the oil displacement experiments in typical fractured-vuggy models, the profile control law and enhanced oil recovery performance of gel foam under different fractured-vuggy structures were studied. In the regular fractured-vuggy network, gel foam adhered to occupy the fractured-vuggy space for plugging and controlled the top gas migration direction to synergistically drive the recovery of remaining oil, ultimately achieving a recovery of 95%. In the combination of fractures and irregular vugs, due to the density, gel foam continuously pushed down and right along the fractures to the vugs, pushing the crude oil and formation water in the vugs to migrate to the production well. The recovery of the gel foam flooding stage was as high as 48%, and the final recovery reached 93.5; only a small amount of shielded remaining oil was difficult to drive. The research results are of great significance to the application of gel foam in enhancing oil recovery in fractured-vuggy reservoirs.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.4c05686