Adaptive Basis Function Method for the Detection of an Undersurface Magnetic Anomaly Target
The orthogonal basis functions (OBFs) method is a prevailing choice for the detection of undersurface magnetic anomaly targets. However, it requires the detecting platform or target to move uniformly along a straight path. To circumvent the restrictions, a new adaptive basis functions (ABFs) approac...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2024-01, Vol.16 (2), p.363 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The orthogonal basis functions (OBFs) method is a prevailing choice for the detection of undersurface magnetic anomaly targets. However, it requires the detecting platform or target to move uniformly along a straight path. To circumvent the restrictions, a new adaptive basis functions (ABFs) approach is proposed in this article. It permits the detection platform to search for a possible target at different speeds along any course. The ABFs are constructed using the real-time data of the onboard triaxial fluxgate, GPS module, and attitude gyro. Based on the pseudo-energy of an apparent target signal, the constant false alarm rate (CFAR) method is employed to judge whether a target is present. Moreover, by defining the pixel as a relative possibility for a target at a geographic location, a magnetic anomaly target imaging scheme is introduced by displaying the pixels onto the searching area. On-site experimental data are utilized to demonstrate the proposed approach. Compared with the traditional OBFs method, the present ABFs approach can substantially improve the detection possibility and reduce false alarms. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs16020363 |