Variational Autoencoders for Data Augmentation in Clinical Studies

Sample size estimation is critical in clinical trials. A sample of adequate size can provide insights into a given population, but the collection of substantial amounts of data is costly and time-intensive. The aim of this study was to introduce a novel data augmentation approach in the field of cli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-07, Vol.13 (15), p.8793
Hauptverfasser: Papadopoulos, Dimitris, Karalis, Vangelis D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sample size estimation is critical in clinical trials. A sample of adequate size can provide insights into a given population, but the collection of substantial amounts of data is costly and time-intensive. The aim of this study was to introduce a novel data augmentation approach in the field of clinical trials by employing variational autoencoders (VAEs). Several forms of VAEs were developed and used for the generation of virtual subjects. Various types of VAEs were explored and employed in the production of virtual individuals, and several different scenarios were investigated. The VAE-generated data exhibited similar performance to the original data, even in cases where a small proportion of them (e.g., 30–40%) was used for the reconstruction of the generated data. Additionally, the generated data showed even higher statistical power than the original data in cases of high variability. This represents an additional advantage for the use of VAEs in situations of high variability, as they can act as noise reduction. The application of VAEs in clinical trials can be a useful tool for decreasing the required sample size and, consequently, reducing the costs and time involved. Furthermore, it aligns with ethical concerns surrounding human participation in trials.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13158793