The influencing factors of health hazards of benzo[a]pyrene in cigarette mainstream smoke: The example of one brand in Beijing
Introduction: The study focused on the influence of tar concentrations, smoking regimen, and smoking behavior, on benzo[a]pyrene (B[a]P) emission from cigarette mainstream smoke and related health hazards to determine the key factors influencing B[a]P reduction and protection of the smoker’s health....
Gespeichert in:
Veröffentlicht in: | Tobacco induced diseases 2022-09, Vol.20 (September), p.1-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction: The study focused on the influence of tar concentrations, smoking regimen, and smoking behavior, on benzo[a]pyrene (B[a]P) emission from cigarette mainstream smoke and related health hazards to determine the key factors influencing B[a]P reduction and protection of the smoker’s health. Methods: A locally popular brand of cigarettes in Beijing was selected with tar concentrations of 1, 3, 5, 8, 10, and 11 mg/cigarette. Two different machine smoking regimens, the Canada Intense (HCI) regimen and the International Organization for Standardization (ISO) regimen, were adopted to collect the cigarette mainstream smoke. The B[a]P emission concentrations were then measured by gas chromatography and mass spectrum. Results: The average B[a]P emission was 8.14 – 17.6 ng/cigarette for the HCI regimen and 0.92 – 3.46 ng/cigarette for the ISO regimen. As expected, the tar concentrations and B[a]P emissions exhibited a positive relation in both the HCI and ISO regimens, the cancer risk and non-cancer risk increased with an increase in tar concentrations for both the ISO and HCI regimens, and the smoking behavior also affected the B[a]P emissions with a tendency of VB (ventilation blocking) > HVB (half ventilation blocking) > DP (deep puff), under the same smoking regimen. Under the same conditions, the cancer risk and non-cancer risk in men were 1.19 and 1.11 times, respectively, higher than in women. Conclusions: The smoking regimen influences the B[a]P emission relatively more than the cigarette tar concentration and smoking behavior. The cancer risk and non-cancer risk are higher in men than in women that possibly due to longer smoking duration and greater smoking intensity. |
---|---|
ISSN: | 1617-9625 1617-9625 |
DOI: | 10.18332/tid/152419 |