Response of seed yield and biochemical traits of Eruca sativa Mill. to drought stress in a collection study

Drought tolerance is a complex trait in plants that involves different biochemical mechanisms. During two years of study (2019–2020), the responses of 64 arugula genotypes to drought stress were evaluated in a randomized complete block design with three replications under field conditions. Several m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-07, Vol.13 (1), p.11157-16, Article 11157
Hauptverfasser: Nikzad, Sharifeh, Mirmohammady Maibody, Seyed Ali Mohammad, Ehtemam, Mohammad Hossein, Golkar, Pooran, Mohammadi, Seyed Abolghasem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought tolerance is a complex trait in plants that involves different biochemical mechanisms. During two years of study (2019–2020), the responses of 64 arugula genotypes to drought stress were evaluated in a randomized complete block design with three replications under field conditions. Several metabolic traits were evaluated, i.e. relative water content, photosynthetic pigments (chlorophyll and carotenoids), proline, malondialdehyde, enzymatic antioxidants (catalase, ascorbate peroxidase, and peroxidase), total phenolic and flavonoid contents and seed yield. On average, the drought stress significantly increased the proline content (24%), catalase (42%), peroxidase (60%) and malondialdehyde activities (116%) over the two years of study. As a result of the drought stress, the seed yield (18%), relative water content (19.5%) and amount of photosynthetic pigments (chlorophyll and carotenoids) dropped significantly. However, the total phenolic and flavonoid contents showed no significant changes. Under drought stress, the highest seed yields were seen in the G 50 , G 57 , G 54 , G 55 and G 60 genotypes, while the lowest value was observed in the G 16 genotype (94 g plant −1 ). According to the findings, when compared to the drought-sensitive genotypes, the drought-tolerant arugula genotypes were marked with higher levels of proline accumulation and antioxidant enzyme activity. Correlation analysis indicated the positive effects of peroxidase, catalase and proline on seed yield under drought conditions. These traits can be considered for the selection of drought-tolerant genotypes in breeding programs.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-38028-6