Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality

Achieving robust cancer-specific lethality is the ultimate clinical goal. Here, we identify a compound with dual-inhibitory properties, named a131, that selectively kills cancer cells, while protecting normal cells. Through an unbiased CETSA screen, we identify the PIP4K lipid kinases as the target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-12, Vol.8 (1), p.2200-13, Article 2200
Hauptverfasser: Kitagawa, Mayumi, Liao, Pei-Ju, Lee, Kyung Hee, Wong, Jasmine, Shang, See Cheng, Minami, Noriaki, Sampetrean, Oltea, Saya, Hideyuki, Lingyun, Dai, Prabhu, Nayana, Diam, Go Ka, Sobota, Radoslaw, Larsson, Andreas, Nordlund, Pär, McCormick, Frank, Ghosh, Sujoy, Epstein, David M., Dymock, Brian W., Lee, Sang Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Achieving robust cancer-specific lethality is the ultimate clinical goal. Here, we identify a compound with dual-inhibitory properties, named a131, that selectively kills cancer cells, while protecting normal cells. Through an unbiased CETSA screen, we identify the PIP4K lipid kinases as the target of a131. Ablation of the PIP4Ks generates a phenocopy of the pharmacological effects of PIP4K inhibition by a131. Notably, PIP4Ks inhibition by a131 causes reversible growth arrest in normal cells by transcriptionally upregulating PIK3IP1 , a suppressor of the PI3K/Akt/mTOR pathway. Strikingly, Ras activation overrides a131-induced PIK3IP1 upregulation and activates the PI3K/Akt/mTOR pathway. Consequently, Ras-transformed cells override a131-induced growth arrest and enter mitosis where a131’s ability to de-cluster supernumerary centrosomes in cancer cells eliminates Ras-activated cells through mitotic catastrophe. Our discovery of drugs with a dual-inhibitory mechanism provides a unique pharmacological strategy against cancer and evidence of cross-activation between the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways via a Ras˧PIK3IP1˧PI3K signaling network. The Ras/Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways are essential for cancer cell survival. Here, the authors describes a molecule a131 with dual-inhibitory properties, which targets PI5P4K and mitosis, and it is involved in Ras/Raf/MEK/ERK and PI3K/Akt/mTOR crosstalk, thereby causing reversible growth arrest in normal cells and cell death of tumor cells.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-02287-5