Effect of TiC on amorphous forming ability, microstructure, and thermal stability of Fe55Nb15Ti15Ta15 alloys
Due to the low amorphous forming ability and the poor room temperature plasticity, the engineering applications of Fe-based amorphous alloys were greatly limited. Based on the design concept of “near mixing enthalpy with effective atomic size difference”, the Fe55Nb15Ti15Ta15 metal component powders...
Gespeichert in:
Veröffentlicht in: | Fen mo ye jin ji shu 2024-02, Vol.42 (1), p.84-90 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | chi |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the low amorphous forming ability and the poor room temperature plasticity, the engineering applications of Fe-based amorphous alloys were greatly limited. Based on the design concept of “near mixing enthalpy with effective atomic size difference”, the Fe55Nb15Ti15Ta15 metal component powders were designed, and the amorphous alloy powders were successfully prepared by mechanical alloying. The effects of TiC ceramic powders doped during the mechanical alloying on the amorphous forming ability, microstructure, and thermal stability of the Fe55Nb15Ti15Ta15 alloy powders were studied. The results show that, the Fe55Nb15Ti15Ta15 alloy powders have the good amorphous forming ability and thermal stability, the TiC ceramic powders are uniformly and stably distributed in the Fe55Nb15Ti15Ta15 amorphous alloy powders. The addition of 15% TiC ceramic powders (mass fraction) delays the alloying and amorphization process of Fe55Nb15Ti15Ta15 alloy powders during ball milling, reduces the thermal stability, and makes |
---|---|
ISSN: | 1001-3784 |
DOI: | 10.19591/j.cnki.cn11-1974/tf.2022100012 |