Creation of novel composite: Flexible magnetic and conductive muscovite
The advancement of flexible technology, such as wearable devices, foldable mobile, and automobiles, has entered a new era. Recently, MICAtronics using flexible muscovite carriers has been introduced as a novel area for flexible technology. The muscovite substrate addresses challenges such as thermal...
Gespeichert in:
Veröffentlicht in: | Materials today advances 2023-12, Vol.20, p.100423, Article 100423 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The advancement of flexible technology, such as wearable devices, foldable mobile, and automobiles, has entered a new era. Recently, MICAtronics using flexible muscovite carriers has been introduced as a novel area for flexible technology. The muscovite substrate addresses challenges such as thermal budget and chemical stability, offering outstanding environmental stability and an alternative approach to the prevalent polymer-based soft technology. However, the role of muscovite in these studies has been limited to serving as substrates. We expand the scope of muscovite applications by proposing a new form called “intercalated muscovite.” In this study, we insert transition metal ions, creating a novel layout of muscovite substrates. Subsequent heat treatment and controlled atmospheres can generate various forms of inserted species. These intercalated systems reveal new physical properties of muscovite substrates, offering a fresh avenue for MICAtronics. |
---|---|
ISSN: | 2590-0498 2590-0498 |
DOI: | 10.1016/j.mtadv.2023.100423 |