Possible biased analgesic of hydromorphone through the G protein-over β-arrestin-mediated pathway: cAMP, CellKey™, and receptor internalization analyses
Morphine, fentanyl, and oxycodone are widely used as analgesics, and recently hydromorphone has been approved in Japan. Although all of these are selective for μ-opioid receptors (MORs) and have similar structures, their analgesic potencies and adverse effects (AEs) are diverse. Recent molecular ana...
Gespeichert in:
Veröffentlicht in: | Journal of pharmacological sciences 2019-06, Vol.140 (2), p.171-177 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Morphine, fentanyl, and oxycodone are widely used as analgesics, and recently hydromorphone has been approved in Japan. Although all of these are selective for μ-opioid receptors (MORs) and have similar structures, their analgesic potencies and adverse effects (AEs) are diverse. Recent molecular analyses of MOR signaling revealed that the G protein-mediated signaling pathway causes analgesic effects and the β-arrestin-mediated signaling pathway is responsible for AEs. We used several cell-based analyses that selectively measure cellular responses activated by either G protein- or β-arrestin-mediated pathways. GloSensor™ cAMP, CellKey™, and receptor internalization assays were performed with four different types of cells stably expressing differentially labelled MOR. EC50 values measured by cAMP and CellKey™ assays had potencies in the order fentanyl ≤ hydromorphone |
---|---|
ISSN: | 1347-8613 1347-8648 |
DOI: | 10.1016/j.jphs.2019.06.005 |