Adaptive replica consistency policy for Kafka

With the rapid development of the Internet, such as storm, s4, sparkstreaming and other large data real-time computing framework, is widely used in real-time monitoring, real-time recommendation, real-time transaction analysis and other systems for real-time consumption of data streams, Kafka messag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences 2018-01, Vol.173, p.1019
Hauptverfasser: Guo, Zonghuai, Ding, Shiwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the rapid development of the Internet, such as storm, s4, sparkstreaming and other large data real-time computing framework, is widely used in real-time monitoring, real-time recommendation, real-time transaction analysis and other systems for real-time consumption of data streams, Kafka messaging system has been widely deployed. Aiming at the problem that the Kafka cluster needs a lot of network overhead, disk overhead and memory consumption to ensure the reliability of the message, the clustering load is increased, and a replica adaptive synchronization strategy based on the message heat and replica update frequency is proposed. It is proved that the Kafka cluster can guarantee the reliability of the message, and it can significantly reduce the overhead of the resource and improve the throughput of the cluster by using the method of dynamically adjusting the replica synchronization to reduce the system resource consumption while ensuring the reliability of the message. to ensure the system availability and high performance.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201817301019