f$-Asymptotically $\mathcal{I}_{\sigma\theta}$-Equivalence of Real Sequences

In this manuscript, we present the ideas of asymptotically $[{\mathcal{I}_{\sigma\theta}}]$-equivalence, asymptotically ${\mathcal{I}_{\sigma\theta}}(f)$-equivalence, asymptotically $[{\mathcal{I}_{\sigma\theta}}(f)]$-equivalence and asymptotically ${\mathcal{I}(S_{\sigma\theta})}$-equivalence for r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences and modelling 2020-04, Vol.3 (1), p.32-37
Hauptverfasser: DUNDAR, Erdinç, AKIN, Nimet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this manuscript, we present the ideas of asymptotically $[{\mathcal{I}_{\sigma\theta}}]$-equivalence, asymptotically ${\mathcal{I}_{\sigma\theta}}(f)$-equivalence, asymptotically $[{\mathcal{I}_{\sigma\theta}}(f)]$-equivalence and asymptotically ${\mathcal{I}(S_{\sigma\theta})}$-equivalence for real sequences. In addition to, investigate some connections among these new ideas and we give some inclusion theorems about them.
ISSN:2636-8692
2636-8692
DOI:10.33187/jmsm.710084