f$-Asymptotically $\mathcal{I}_{\sigma\theta}$-Equivalence of Real Sequences
In this manuscript, we present the ideas of asymptotically $[{\mathcal{I}_{\sigma\theta}}]$-equivalence, asymptotically ${\mathcal{I}_{\sigma\theta}}(f)$-equivalence, asymptotically $[{\mathcal{I}_{\sigma\theta}}(f)]$-equivalence and asymptotically ${\mathcal{I}(S_{\sigma\theta})}$-equivalence for r...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences and modelling 2020-04, Vol.3 (1), p.32-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this manuscript, we present the ideas of asymptotically $[{\mathcal{I}_{\sigma\theta}}]$-equivalence, asymptotically ${\mathcal{I}_{\sigma\theta}}(f)$-equivalence, asymptotically $[{\mathcal{I}_{\sigma\theta}}(f)]$-equivalence and asymptotically ${\mathcal{I}(S_{\sigma\theta})}$-equivalence for real sequences. In addition to, investigate some connections among these new ideas and we give some inclusion theorems about them. |
---|---|
ISSN: | 2636-8692 2636-8692 |
DOI: | 10.33187/jmsm.710084 |