Mapping rainfall erosivity at a regional scale: a comparison of interpolation methods in the Ebro Basin (NE Spain)
Rainfall erosivity is a major causal factor of soil erosion, and it is included in many prediction models. Maps of rainfall erosivity indices are required for assessing soil erosion at the regional scale. In this study a comparison is made between several techniques for mapping the rainfall erosivit...
Gespeichert in:
Veröffentlicht in: | Hydrology and earth system sciences 2009-01, Vol.13 (10), p.1907-1920 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rainfall erosivity is a major causal factor of soil erosion, and it is included in many prediction models. Maps of rainfall erosivity indices are required for assessing soil erosion at the regional scale. In this study a comparison is made between several techniques for mapping the rainfall erosivity indices: i) the RUSLE R factor and ii) the average EI30 index of the erosive events over the Ebro basin (NE Spain). A spatially dense precipitation data base with a high temporal resolution (15 min) was used. Global, local and geostatistical interpolation techniques were employed to produce maps of the rainfall erosivity indices, as well as mixed methods. To determine the reliability of the maps several goodness-of-fit and error statistics were computed, using a cross-validation scheme, as well as the uncertainty of the predictions, modeled by Gaussian geostatistical simulation. All methods were able to capture the general spatial pattern of both erosivity indices. The semivariogram analysis revealed that spatial autocorrelation only affected at distances of ~15 km around the observatories. Therefore, local interpolation techniques tended to be better overall considering the validation statistics. All models showed high uncertainty, caused by the high variability of rainfall erosivity indices both in time and space, what stresses the importance of having long data series with a dense spatial coverage. |
---|---|
ISSN: | 1607-7938 1027-5606 1607-7938 |
DOI: | 10.5194/hess-13-1907-2009 |