Cayley approximation operator with an application to a system of set-valued Cayley type inclusions

In this paper, we introduce and study a system of set-valued Cayley type inclusions involving Cayley operator and (H; )-monotone operator in real Banach spaces. We show that Cayley operator associated with the (H; )-monotone operator is Lipschitz type continuous. Using the proximal point operator te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Paranaense de Matemática 2022-01, Vol.40, p.1-14
Hauptverfasser: Akram, Mohd, Chen, J. W., Dilshad, Mohd
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce and study a system of set-valued Cayley type inclusions involving Cayley operator and (H; )-monotone operator in real Banach spaces. We show that Cayley operator associated with the (H; )-monotone operator is Lipschitz type continuous. Using the proximal point operator technique, we have established a fixed point formulation for the system of set-valued Cayley type inclusions. Further, the existence and uniqueness of the approximate solution are proved. Moreover, we suggest an iterative algorithm for the system of set-valued Cayley type inclusions and discuss the strong convergence of the sequences generated by the proposed algorithm. Some examples are constructed to illustrate some concepts used in this paper.
ISSN:0037-8712
2175-1188
DOI:10.5269/bspm.51641