A thermostability perspective on enhancing physicochemical and cytological characteristics of octacalcium phosphate by doping iron and strontium

Investigation of thermostability will lead the groundbreaking of unraveling the mechanism of influence of ion-doping on the properties of calcium phosphates. In this work, octacalcium phosphate (OCP), a metastable precursor of biological apatite, was used as a stability model for doping ions (Fe3+ a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioactive materials 2021-05, Vol.6 (5), p.1267-1282
Hauptverfasser: Shi, Haishan, Ye, Xiaoling, Zhang, Jing, Wu, Tingting, Yu, Tao, Zhou, Changren, Ye, Jiandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Investigation of thermostability will lead the groundbreaking of unraveling the mechanism of influence of ion-doping on the properties of calcium phosphates. In this work, octacalcium phosphate (OCP), a metastable precursor of biological apatite, was used as a stability model for doping ions (Fe3+ and Sr2+) with different ionic charges and radii. After treated under hot air at different temperatures (110–200 °C), the phase, morphology, structure, physicochemical properties, protein affinity, ions release, and cytological responses of the ion-doped OCPs were investigated comparatively. The results showed that the collapse of OCP crystals gradually occurred, accompanying with the dehydration of hydrated layers and the disintegration of plate-like crystals as the temperature increased. The collapsed crystals still retained the typical properties of OCP and the potential of conversion into hydroxyapatite. Compared to the undoped OCP, Fe-OCP, and Sr-OCP had lower and higher thermostability respectively, leading to different material surface properties and ions release. The adjusted thermostability of Fe-OCP and Sr-OCP significantly enhanced the adsorption of proteins (BSA and LSZ) and the cytological behavior (adhesion, spreading, proliferation, and osteogenic differentiation) of bone marrow mesenchymal stem cells to a varying extent under the synergistic effects of corresponding surface characteristics and early active ions release. This work paves the way for understanding the modification mechanism of calcium phosphates utilizing ion doping strategy and developing bioactive OCP-based materials for tissue repair. [Display omitted] •OCP was used as a stability model for doping ions with different charges and radii.•Collapse of OCP crystals occurred with structural dehydration after heat treatment.•Fe and Sr doping altered the thermostability of OCP crystals in an opposite way.•The thermostable difference affected the surface properties and ion release of OCP.•Active surface and ion release of OCP synergistically mediated its biocompatibility.
ISSN:2452-199X
2452-199X
DOI:10.1016/j.bioactmat.2020.10.025