Improved Energy Management Strategy for Prosumer Buildings with Renewable Energy Sources and Battery Energy Storage Systems

The concept of utilizing microgrids (MGs) to convert buildings into prosumers is gaining massive popularity because of its economic and environmental benefits. These pro-sumer buildings consist of renewable energy sources and usually install battery energy storage systems (BESSs) to deal with the un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Modern Power Systems and Clean Energy 2024-03, Vol.12 (2), p.381-392
Hauptverfasser: Sharma, Pavitra, Kumar Saini, Krishna, Datt Mathur, Hitesh, Mishra, Puneet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of utilizing microgrids (MGs) to convert buildings into prosumers is gaining massive popularity because of its economic and environmental benefits. These pro-sumer buildings consist of renewable energy sources and usually install battery energy storage systems (BESSs) to deal with the uncertain nature of renewable energy sources. However, because of the high capital investment of BESS and the limitation of available energy, there is a need for an effective energy management strategy for prosumer buildings that maximizes the profit of building owner and increases the operating life span of BESS. In this regard, this paper proposes an improved energy management strategy (IEMS) for the prosumer building to minimize the operating cost of MG and degradation factor of BESS. Moreover, to estimate the practical operating life span of BESS, this paper utilizes a non-linear battery degradation model. In addition, a flexible load shifting (FLS) scheme is also developed and integrated into the proposed strategy to further improve its performance. The proposed strategy is tested for the real-time annual data of a grid-tied solar photovoltaic (PV) and BESS-powered AC-DC hybrid MG installed at a commercial building. Moreover, the scenario reduction technique is used to handle the uncertainty associated with generation and load demand. To validate the performance of the proposed strategy, the results of IEMS are compared with the well-established energy management strategies. The simulation results verify that the proposed strategy substantially increases the profit of the building owner and operating life span of BESS. Moreover, FLS enhances the performance of IEMS by further improving the financial profit of MG owner and the life span of BESS, thus making the operation of prosumer building more economical and efficient.
ISSN:2196-5625
2196-5420
DOI:10.35833/MPCE.2023.000761