Near-infrared-responsive silver-capped magnetic nanoclusters for cancer therapy

Aim: Near-infrared (NIR)-based photothermal therapy (PTT) has been proposed as a prospective adjuvant to traditional chemotherapy. The present work aims to study the impact of silver-coated magnetic nanoparticles as a PTT agent against multiple cancer cell lines. Materials and Methods: Silver-coated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Radiation and Cancer Research 2020-01, Vol.11 (2), p.45-51
Hauptverfasser: Tewari, Amit, Gupta, Ruby, Sharma, Deepika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aim: Near-infrared (NIR)-based photothermal therapy (PTT) has been proposed as a prospective adjuvant to traditional chemotherapy. The present work aims to study the impact of silver-coated magnetic nanoparticles as a PTT agent against multiple cancer cell lines. Materials and Methods: Silver-coated magnetic nanoclusters (Ag-MNCs) were synthesized by a modified method and characterized using X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible absorption spectra. Its effect as an agent for NIR-based PTT was assessed on four different human cell lines, namely glioblastoma cell line U-87 MG, osteosarcoma MG-63, lung carcinoma A549, and triple-negative breast cancer cell line MDA-MB-231 by irradiation with 750 nm NIR laser for 10 min. Cellular damage was assessed in terms of MTT and cell cycle analysis and visualized by confocal microscopy. Results: The Ag-MNCs were successfully generated and exhibited excellent hyperthermic rise when exposed to NIR laser. A reduction of more than 60% of the cells was observed in the MTT assay. Confocal microscopy also confirmed significant nuclear damage to cells exposed to PTT in the presence of Ag-MNCs. Conclusion: Our results confirm that the Ag-MNCs have an excellent hyperthermic profile and as the test results indicate that it can be utilized as an agent for NIR-based PTT against various types of cancer cells.
ISSN:2588-9273
2468-9203
DOI:10.4103/jrcr.jrcr_19_20