Near-infrared-responsive silver-capped magnetic nanoclusters for cancer therapy
Aim: Near-infrared (NIR)-based photothermal therapy (PTT) has been proposed as a prospective adjuvant to traditional chemotherapy. The present work aims to study the impact of silver-coated magnetic nanoparticles as a PTT agent against multiple cancer cell lines. Materials and Methods: Silver-coated...
Gespeichert in:
Veröffentlicht in: | Journal of Radiation and Cancer Research 2020-01, Vol.11 (2), p.45-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aim: Near-infrared (NIR)-based photothermal therapy (PTT) has been proposed as a prospective adjuvant to traditional chemotherapy. The present work aims to study the impact of silver-coated magnetic nanoparticles as a PTT agent against multiple cancer cell lines. Materials and Methods: Silver-coated magnetic nanoclusters (Ag-MNCs) were synthesized by a modified method and characterized using X-ray diffraction, transmission electron microscopy, Fourier-transform infrared spectroscopy, and ultraviolet-visible absorption spectra. Its effect as an agent for NIR-based PTT was assessed on four different human cell lines, namely glioblastoma cell line U-87 MG, osteosarcoma MG-63, lung carcinoma A549, and triple-negative breast cancer cell line MDA-MB-231 by irradiation with 750 nm NIR laser for 10 min. Cellular damage was assessed in terms of MTT and cell cycle analysis and visualized by confocal microscopy. Results: The Ag-MNCs were successfully generated and exhibited excellent hyperthermic rise when exposed to NIR laser. A reduction of more than 60% of the cells was observed in the MTT assay. Confocal microscopy also confirmed significant nuclear damage to cells exposed to PTT in the presence of Ag-MNCs. Conclusion: Our results confirm that the Ag-MNCs have an excellent hyperthermic profile and as the test results indicate that it can be utilized as an agent for NIR-based PTT against various types of cancer cells. |
---|---|
ISSN: | 2588-9273 2468-9203 |
DOI: | 10.4103/jrcr.jrcr_19_20 |