Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data Fusion

This paper pioneers the use of the extreme learning machine (ELM) approach for surface roughness prediction in ultra-precision milling, leveraging the excellent fitting ability with small datasets and the fast learning speed of the extreme learning machine method. By providing abundant machining inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2023-11, Vol.14 (11), p.2016
Hauptverfasser: Shang, Suiyan, Wang, Chunjin, Liang, Xiaoliang, Cheung, Chi Fai, Zheng, Pai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper pioneers the use of the extreme learning machine (ELM) approach for surface roughness prediction in ultra-precision milling, leveraging the excellent fitting ability with small datasets and the fast learning speed of the extreme learning machine method. By providing abundant machining information, the machining parameters and force signal data are fused on the feature level to further improve ELM prediction accuracy. An ultra-precision milling experiment was designed and conducted to verify our proposed data-fusion-based ELM method. The results show that the ELM with data fusion outperforms other state-of-art methods in surface roughness prediction. It achieves an impressively low mean absolute percentage error of 1.6% while requiring a mere 18 s for model training.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14112016