Surface Roughness Prediction in Ultra-Precision Milling: An Extreme Learning Machine Method with Data Fusion
This paper pioneers the use of the extreme learning machine (ELM) approach for surface roughness prediction in ultra-precision milling, leveraging the excellent fitting ability with small datasets and the fast learning speed of the extreme learning machine method. By providing abundant machining inf...
Gespeichert in:
Veröffentlicht in: | Micromachines (Basel) 2023-11, Vol.14 (11), p.2016 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper pioneers the use of the extreme learning machine (ELM) approach for surface roughness prediction in ultra-precision milling, leveraging the excellent fitting ability with small datasets and the fast learning speed of the extreme learning machine method. By providing abundant machining information, the machining parameters and force signal data are fused on the feature level to further improve ELM prediction accuracy. An ultra-precision milling experiment was designed and conducted to verify our proposed data-fusion-based ELM method. The results show that the ELM with data fusion outperforms other state-of-art methods in surface roughness prediction. It achieves an impressively low mean absolute percentage error of 1.6% while requiring a mere 18 s for model training. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi14112016 |