Frequency-Voltage-var Function for Active Front-end VFD on Oil and Gas Platforms with Offshore Wind Generation

Renewable energy resources emerge as a sustainable alternative to augmenting the energy supply of floating production storage and offloading (FPSO) platforms. However, the increased generation at FPSO based on converter-interfaced energy decreases the system-equivalent inertia constant, which become...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Eletrônica de Potência 2024-11, Vol.29, p.e202447
Hauptverfasser: Medeiros, Kassiane de S., Callegari, João Marcus S., Da Rocha, Lorrana F., Brandao, Danilo I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Renewable energy resources emerge as a sustainable alternative to augmenting the energy supply of floating production storage and offloading (FPSO) platforms. However, the increased generation at FPSO based on converter-interfaced energy decreases the system-equivalent inertia constant, which becomes more susceptible to frequency deviations. This paper proposes and evaluates the combined frequency-voltage-var control performance to mitigate frequency variation in a typical FPSO unit with penetration of floating wind energy generation. The control functions are communication-free and embedded in the active front-end variable frequency drives (AFE-VFDs), which are installed on the FPSO and have the primary function of controlling the speed of water injection pumps. The FPSO electrical power system model is developed in MATLAB/Simulink®. Comparative results obtained from the AFE-VFD equipped with volt-var, freq-var, and combined freq-volt-var functions are shown to highlight the proposed solution merits. The results have shown a conflicting behavior with the frequency and voltage deviation improvement associated with absorption and injection of reactive power, respectively. Accordingly, the frequency-volt-var prioritizes frequency deviations during heavy transient events and voltage deviations during regular operation.
ISSN:1414-8862
1984-557X
DOI:10.18618/REP.e202447