Identification of discontinuous parameters in double phase obstacle problems

In this article, we investigate the inverse problem of identification of a discontinuous parameter and a discontinuous boundary datum to an elliptic inclusion problem involving a double phase differential operator, a multivalued convection term (a multivalued reaction term depending on the gradient)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in nonlinear analysis 2023-01, Vol.12 (1), p.1-22
Hauptverfasser: Zeng, Shengda, Bai, Yunru, Winkert, Patrick, Yao, Jen-Chih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we investigate the inverse problem of identification of a discontinuous parameter and a discontinuous boundary datum to an elliptic inclusion problem involving a double phase differential operator, a multivalued convection term (a multivalued reaction term depending on the gradient), a multivalued boundary condition and an obstacle constraint. First, we apply a surjectivity theorem for multivalued mappings, which is formulated by the sum of a maximal monotone multivalued operator and a multivalued pseudomonotone mapping to examine the existence of a nontrivial solution to the double phase obstacle problem, which exactly relies on the first eigenvalue of the Steklov eigenvalue problem for the -Laplacian. Then, a nonlinear inverse problem driven by the double phase obstacle equation is considered. Finally, by introducing the parameter-to-solution-map, we establish a continuous result of Kuratowski type and prove the solvability of the inverse problem.
ISSN:2191-950X
2191-950X
DOI:10.1515/anona-2022-0223