Identification of discontinuous parameters in double phase obstacle problems
In this article, we investigate the inverse problem of identification of a discontinuous parameter and a discontinuous boundary datum to an elliptic inclusion problem involving a double phase differential operator, a multivalued convection term (a multivalued reaction term depending on the gradient)...
Gespeichert in:
Veröffentlicht in: | Advances in nonlinear analysis 2023-01, Vol.12 (1), p.1-22 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we investigate the inverse problem of identification of a discontinuous parameter and a discontinuous boundary datum to an elliptic inclusion problem involving a double phase differential operator, a multivalued convection term (a multivalued reaction term depending on the gradient), a multivalued boundary condition and an obstacle constraint. First, we apply a surjectivity theorem for multivalued mappings, which is formulated by the sum of a maximal monotone multivalued operator and a multivalued pseudomonotone mapping to examine the existence of a nontrivial solution to the double phase obstacle problem, which exactly relies on the first eigenvalue of the Steklov eigenvalue problem for the
-Laplacian. Then, a nonlinear inverse problem driven by the double phase obstacle equation is considered. Finally, by introducing the parameter-to-solution-map, we establish a continuous result of Kuratowski type and prove the solvability of the inverse problem. |
---|---|
ISSN: | 2191-950X 2191-950X |
DOI: | 10.1515/anona-2022-0223 |