Optimization of the Synthesis and Energy Transfer of Ca2MgWO6:Cr3+,Nd3

This work pertains to Cr3+ and Nd3+ co-activated Ca2MgWO6 phosphors synthesized by high temperature solid-state method using oxides and carbonates as raw materials. All luminescent samples according to Ca2MgWO6:Cr3+,Nd3+ include Cr3+ for the absorption of UV and visible radiation (230–800 nm) prior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganics 2021-04, Vol.9 (4), p.23
Hauptverfasser: Anselm, Viktor, Jüstel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work pertains to Cr3+ and Nd3+ co-activated Ca2MgWO6 phosphors synthesized by high temperature solid-state method using oxides and carbonates as raw materials. All luminescent samples according to Ca2MgWO6:Cr3+,Nd3+ include Cr3+ for the absorption of UV and visible radiation (230–800 nm) prior to energy transfer to Nd3+. As a result of the energy transfer between Cr3+ and Nd3+, we observe line emission originating from Nd3+ in the near infrared range additionally to the broad band near infrared emission from Cr3+ assigned to the spin-allowed 4T2 → 4A2 transition. The energy transfer from Cr3+ to Nd3+ is discussed via the variations of the lifetime data of Cr3+ and Nd3+. The strong absorption of Cr3+ in the ultraviolet range and the efficient energy transfer from Cr3+ to Nd3+ indicate that the herein presented material type can serve as a radiation converter for near infrared region light emitting diodes (NIR-LEDs) comprising an UV-A emitting (Al,Ga)N chip.
ISSN:2304-6740
2304-6740
DOI:10.3390/inorganics9040023