Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras

In this paper, we consider the symmetry algebra of the geodesic equations of the canonical connection on a Lie group. We mainly consider the solvable indecomposable six-dimensional Lie algebras with co-dimension two abelian nilradical that have an abelian complement. In dimension six, there are nine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2024-01, Vol.9 (1), p.1969-1996
Hauptverfasser: Almutiben, Nouf, Boone, Edward L., Ghanam, Ryad, Thompson, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the symmetry algebra of the geodesic equations of the canonical connection on a Lie group. We mainly consider the solvable indecomposable six-dimensional Lie algebras with co-dimension two abelian nilradical that have an abelian complement. In dimension six, there are nineteen such algebras, namely, $ A_{6, 1} $–$ A_{6, 19} $ in Turkowski's list. For each algebra, we give the geodesic equations, a basis for the symmetry Lie algebra in terms of vector fields, and finally we identify the symmetry Lie algebra from standard lists.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2024098