Stochastic pulsing of gene expression enables the generation of spatial patterns in Bacillus subtilis biofilms

Stochastic pulsing of gene expression can generate phenotypic diversity in a genetically identical population of cells, but it is unclear whether it has a role in the development of multicellular systems. Here, we show how stochastic pulsing of gene expression enables spatial patterns to form in a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-02, Vol.11 (1), p.950-950, Article 950
Hauptverfasser: Nadezhdin, Eugene, Murphy, Niall, Dalchau, Neil, Phillips, Andrew, Locke, James C. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stochastic pulsing of gene expression can generate phenotypic diversity in a genetically identical population of cells, but it is unclear whether it has a role in the development of multicellular systems. Here, we show how stochastic pulsing of gene expression enables spatial patterns to form in a model multicellular system, Bacillus subtilis bacterial biofilms. We use quantitative microscopy and time-lapse imaging to observe pulses in the activity of the general stress response sigma factor σ B in individual cells during biofilm development. Both σ B and sporulation activity increase in a gradient, peaking at the top of the biofilm, even though σ B represses sporulation. As predicted by a simple mathematical model, increasing σ B expression shifts the peak of sporulation to the middle of the biofilm. Our results demonstrate how stochastic pulsing of gene expression can play a key role in pattern formation during biofilm development. Stochastic pulsing of gene expression can generate phenotypic diversity in a genetically identical population of cells. Here, the authors show that stochastic pulsing in the expression of a sigma factor enables the formation of spatial patterns in a multicellular system, Bacillus subtilis bacterial biofilms.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-14431-9