From electrons to phase diagrams with machine learning potentials using pyiron based automated workflows

We present a comprehensive and user-friendly framework built upon the pyiron integrated development environment (IDE), enabling researchers to perform the entire Machine Learning Potential (MLP) development cycle consisting of (i) creating systematic DFT databases, (ii) fitting the Density Functiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials 2024-11, Vol.10 (1), p.261-15, Article 261
Hauptverfasser: Menon, Sarath, Lysogorskiy, Yury, Knoll, Alexander L. M., Leimeroth, Niklas, Poul, Marvin, Qamar, Minaam, Janssen, Jan, Mrovec, Matous, Rohrer, Jochen, Albe, Karsten, Behler, Jörg, Drautz, Ralf, Neugebauer, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a comprehensive and user-friendly framework built upon the pyiron integrated development environment (IDE), enabling researchers to perform the entire Machine Learning Potential (MLP) development cycle consisting of (i) creating systematic DFT databases, (ii) fitting the Density Functional Theory (DFT) data to empirical potentials or MLPs, and (iii) validating the potentials in a largely automatic approach. The power and performance of this framework are demonstrated for three conceptually very different classes of interatomic potentials: an empirical potential (embedded atom method - EAM), neural networks (high-dimensional neural network potentials - HDNNP) and expansions in basis sets (atomic cluster expansion - ACE). As an advanced example for validation and application, we show the computation of a binary composition-temperature phase diagram for Al-Li, a technologically important lightweight alloy system with applications in the aerospace industry.
ISSN:2057-3960
2057-3960
DOI:10.1038/s41524-024-01441-0