Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption

Interference usually occurs between two non-orthogonally polarized light beams. Hence, metasurface enabled polarization multiplexing is generally conducted under two orthogonal polarization states to realize independent intensity and/or phase modulations. Herein, we show that polarization multiplexe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Germany), 2021-09, Vol.10 (11), p.2903-2914
Hauptverfasser: Ren, Renyuan, Li, Zile, Deng, Liangui, Shan, Xin, Dai, Qi, Guan, Zhiqiang, Zheng, Guoxing, Yu, Shaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interference usually occurs between two non-orthogonally polarized light beams. Hence, metasurface enabled polarization multiplexing is generally conducted under two orthogonal polarization states to realize independent intensity and/or phase modulations. Herein, we show that polarization multiplexed metasurfaces can work under three non-orthogonal polarization states to realize tri-channel image displays with independent information encoding. Specifically, enabled by orientation degeneracy, each nanostructure of the metasurface operates with triple-manipulations of light, i.e., two channels for independent intensity manipulation under /4 and 3 /8 linearly polarized (LP) light, respectively, and one channel for phase manipulation without polarization control. We experimentally demonstrate this concept by recording one continuous-brightness polychromatic image and one binary-brightness polychromatic image right at the metasurface plane, while a continuous-brightness polychromatic image is reconstructed in the far field, corresponding to three independent channels, respectively. More interestingly, in another design strategy with separated image encoding of two wavelengths, up to six independent image-display channels can be established and information delivery becomes safer by utilizing encryption algorithms. With the features of high information capacity and high security, the proposed meta-devices can empower advanced research and applications in multi-channel image displays, orbital angular momentum multiplexing communication, information encryption, anti-counterfeiting, multifunctional integrated nano-optoelectronics, etc.
ISSN:2192-8614
2192-8606
2192-8614
DOI:10.1515/nanoph-2021-0259