Residual current detection method based on improved VMD-BPNN

To further enhance the residual current detection capability of low-voltage distribution networks, an improved adaptive residual current detection method that combines variational modal decomposition (VMD) and BP neural network (BPNN) is proposed. Firstly, the method employs the envelope entropy as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2024-02, Vol.19 (2), p.e0289129-e0289129
Hauptverfasser: Bai, Yunpeng, Zhang, Xiangke, Wang, Yajing, Wang, Lei, Wei, Qinqin, Zhao, Wenlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To further enhance the residual current detection capability of low-voltage distribution networks, an improved adaptive residual current detection method that combines variational modal decomposition (VMD) and BP neural network (BPNN) is proposed. Firstly, the method employs the envelope entropy as the adaptability function, optimizes the [k, ɑ] combination value of the VMD decomposition using the bacterial foraging-particle swarm algorithm (BFO-PSO), and utilizes the interrelation number R as the classification index with the Least Mean Square Algorithm (LMS) to classify, filter, and extract the effective signal from the decomposed signal. Then, the extracted signals are detected by BPNN, and the training data are utilized to predict the residual current signals. Simulation and experimental data demonstrate that the proposed algorithm exhibits strong robustness and high detection accuracy. With an ambient noise of 10dB, the signal-to-noise ratio is 16.3108dB, the RMSE is 0.4359, and the goodness-of-fit is 0.9627 after processing by the algorithm presented in this paper, which are superior to the Variational Modal Decomposition-Long Short-Term Memory (VMD-LSTM) and Normalized-Least Mean Square (N-LMS) detection methods. The results were also statistically analyzed in conjunction with the Kolmogorov-Smirnov test, which demonstrated significance at the experimental data level, indicating the high accuracy of the algorithms presented in this paper and providing a certain reference for new residual current protection devices for biological body electrocution.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0289129