Investigation of Maternal Diet and FADS1 Polymorphism Associated with Long-Chain Polyunsaturated Fatty Acid Compositions in Human Milk

Increasing the amount of long-chain polyunsaturated fatty acids (LCPUFA) in human milk is an important strategy for infant growth and development. We investigated the associations of LCPUFA compositions in human milk with maternal diet (especially fish and shellfish intake), with fatty acid Δ5 desat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2022-05, Vol.14 (10), p.2160
Hauptverfasser: Niwa, Sakurako, Kawabata, Terue, Shoji, Kumiko, Ogata, Hiromitsu, Kagawa, Yasuo, Nakayama, Kazuhiro, Yanagisawa, Yoshiko, Iwamoto, Sadahiko, Tatsuta, Nozomi, Asato, Kaname, Arima, Takahiro, Yaegashi, Nobuo, Nakai, Kunihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing the amount of long-chain polyunsaturated fatty acids (LCPUFA) in human milk is an important strategy for infant growth and development. We investigated the associations of LCPUFA compositions in human milk with maternal diet (especially fish and shellfish intake), with fatty acid Δ5 desaturase gene (FADS1) polymorphisms, and with gene-diet interactions. The present study was performed as part of an adjunct study of the Japan Environment and Children’s Study. The participants were 304 lactating females, who provided human milk 6−7 months after delivery. Fatty acids in human milk were analyzed by gas chromatography, and dietary surveys were conducted using a brief self-administered diet history questionnaire. We also analyzed a single nucleotide polymorphism of FADS1 (rs174547, T/C). There was a significant difference in arachidonic acid (ARA) composition in human milk among the genotype groups, and the values were decreasing in the order of TT > TC > CC. The concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were also different between TT and CC genotype, indicating a tendency for decreasing values in the same order. The composition of ARA showed significant gene−dietary interactions in multiple regression analysis, and the positive correlation between fish and shellfish intake and ARA composition in human milk was significant only in the CC genotype. Moreover, the factor most strongly associated with EPA and DHA composition in human milk was fish and shellfish intake. Therefore, it was suggested that increasing fish and shellfish intake in mothers may increase EPA and DHA composition in human milk, while increasing fish and shellfish intake in CC genotype mothers may lead to increased ARA composition in human milk.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu14102160