Multi-Task Learning for Sentiment Analysis with Hard-Sharing and Task Recognition Mechanisms
In the era of big data, multi-task learning has become one of the crucial technologies for sentiment analysis and classification. Most of the existing multi-task learning models for sentiment analysis are developed based on the soft-sharing mechanism that has less interference between different task...
Gespeichert in:
Veröffentlicht in: | Information (Basel) 2021-05, Vol.12 (5), p.207 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the era of big data, multi-task learning has become one of the crucial technologies for sentiment analysis and classification. Most of the existing multi-task learning models for sentiment analysis are developed based on the soft-sharing mechanism that has less interference between different tasks than the hard-sharing mechanism. However, there are also fewer essential features that the model can extract with the soft-sharing method, resulting in unsatisfactory classification performance. In this paper, we propose a multi-task learning framework based on a hard-sharing mechanism for sentiment analysis in various fields. The hard-sharing mechanism is achieved by a shared layer to build the interrelationship among multiple tasks. Then, we design a task recognition mechanism to reduce the interference of the hard-shared feature space and also to enhance the correlation between multiple tasks. Experiments on two real-world sentiment classification datasets show that our approach achieves the best results and improves the classification accuracy over the existing methods significantly. The task recognition training process enables a unique representation of the features of different tasks in the shared feature space, providing a new solution reducing interference in the shared feature space for sentiment analysis. |
---|---|
ISSN: | 2078-2489 2078-2489 |
DOI: | 10.3390/info12050207 |