Timed Parity Games: Complexity and Robustness
We consider two-player games played in real time on game structures with clocks where the objectives of players are described using parity conditions. The games are \emph{concurrent} in that at each turn, both players independently propose a time delay and an action, and the action with the shorter...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2011-12, Vol.7, Issue 4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider two-player games played in real time on game structures with
clocks where the objectives of players are described using parity conditions.
The games are \emph{concurrent} in that at each turn, both players
independently propose a time delay and an action, and the action with the
shorter delay is chosen. To prevent a player from winning by blocking time, we
restrict each player to play strategies that ensure that the player cannot be
responsible for causing a zeno run. First, we present an efficient reduction of
these games to \emph{turn-based} (i.e., not concurrent) \emph{finite-state}
(i.e., untimed) parity games. Our reduction improves the best known complexity
for solving timed parity games. Moreover, the rich class of algorithms for
classical parity games can now be applied to timed parity games. The states of
the resulting game are based on clock regions of the original game, and the
state space of the finite game is linear in the size of the region graph.
Second, we consider two restricted classes of strategies for the player that
represents the controller in a real-time synthesis problem, namely,
\emph{limit-robust} and \emph{bounded-robust} winning strategies. Using a
limit-robust winning strategy, the controller cannot choose an exact
real-valued time delay but must allow for some nonzero jitter in each of its
actions. If there is a given lower bound on the jitter, then the strategy is
bounded-robust winning. We show that exact strategies are more powerful than
limit-robust strategies, which are more powerful than bounded-robust winning
strategies for any bound. For both kinds of robust strategies, we present
efficient reductions to standard timed automaton games. These reductions
provide algorithms for the synthesis of robust real-time controllers. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-7(4:8)2011 |