Ethanol extract of Gynura bicolour reduces atherosclerosis risk by enhancing antioxidant capacity and reducing adhesion molecule levels

Gynura bicolour (Roxb. and Willd.) DC (Asteraceae) leaf is a common vegetable. Ethanol extracts of fresh G. bicolour leaves (GBEE) have several physiological effects, but studies on atherosclerosis are limited. We investigated the oxidant scavenging ability and vascular adhesion molecule expression...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical biology 2021-01, Vol.59 (1), p.502-510
Hauptverfasser: Hsieh, Shu-Ling, Wang, Jinn-Chyi, Huang, Yun-Shan, Wu, Chih-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gynura bicolour (Roxb. and Willd.) DC (Asteraceae) leaf is a common vegetable. Ethanol extracts of fresh G. bicolour leaves (GBEE) have several physiological effects, but studies on atherosclerosis are limited. We investigated the oxidant scavenging ability and vascular adhesion molecule expression of these extracts. The antioxidant effects of 0.05-0.4 mg/mL GBEE were analyzed in vitro. Intracellular antioxidant capacity and adhesion molecule levels were detected in EA.hy926 cells pre-treated with 10-100 μg/mL GBEE for 8 h, then TNF-α for 3 h. The antioxidant capacity of red blood cells and the adhesion molecule levels in the thoracic aorta were detected in high-fat diet (HFD)-fed Sprague-Dawley rats treated with GBEE for 12 weeks. The in vitro EC 50 values of GBEE based on its DPPH radical-scavenging ability, reducing power, and ferrous ion-chelating ability were 0.20, 3.21 and 0.49 mg/mL, respectively. In TNF-α-treated EA.hy926 cells, the thiobarbituric acid-reactive substance levels were decreased after 10, 50, or 100 μg/mL GBEE treatments (IC 50 : 19.1 mg/mL). When HFD-fed rats were co-treated with GBEE, the GBEE-H group exhibited 25% higher glutathione levels than the HFD group (p 
ISSN:1388-0209
1744-5116
DOI:10.1080/13880209.2021.1912116