Canonized Rewriting and Ground AC Completion Modulo Shostak Theories : Design and Implementation
AC-completion efficiently handles equality modulo associative and commutative function symbols. When the input is ground, the procedure terminates and provides a decision algorithm for the word problem. In this paper, we present a modular extension of ground AC-completion for deciding formulas in th...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2012-09, Vol.8, Issue 3 (3:16), p.1-29 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AC-completion efficiently handles equality modulo associative and commutative
function symbols. When the input is ground, the procedure terminates and
provides a decision algorithm for the word problem. In this paper, we present a
modular extension of ground AC-completion for deciding formulas in the
combination of the theory of equality with user-defined AC symbols,
uninterpreted symbols and an arbitrary signature disjoint Shostak theory X. Our
algorithm, called AC(X), is obtained by augmenting in a modular way ground
AC-completion with the canonizer and solver present for the theory X. This
integration rests on canonized rewriting, a new relation reminiscent to
normalized rewriting, which integrates canonizers in rewriting steps. AC(X) is
proved sound, complete and terminating, and is implemented to extend the core
of the Alt-Ergo theorem prover. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-8(3:16)2012 |